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Summary
Sickle cell disease (SCD) is an inherited haemoglobin
disorder, associated with recurrent painful episodes,
ongoing haemolytic anaemia and progressive multi-organ
damage. Until the early 1990s, survival beyond the fourth
decade for a patient with SCD was considered unusual
and prompted case reports. Nowadays, in countries with
developed health care systems, more than 90 percent of
newborns with SCD survive into adulthood. Nevertheless,
their life expectancy is still shortened by more than two
decades compared to the general population. With an
increasing life expectancy, SCD has now evolved into a
debilitating disorder with substantial morbidity resulting
from ongoing sickle cell vasculopathy and multi-organ
damage. Limited data on health care issues of older
adults with SCD poses multiple challenges to patients,
their families and health care providers. In this review, we
will address and discuss acute and chronic complications
of SCD with a special focus on the older adult.
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INTRODUCTION, BACKGROUND AND
SCOPE OF THE PROBLEM
With an estimate of 275,000 newborns every year, sickle cell
disease (SCD) is considered a public health burden by the
World Health Organization (WHO) and United Nations
(UN).1 Two-thirds of newborns with SCD occur in sub-
Saharan Africa where malaria is endemic. However, due to
population movements, substantial numbers of children are
now being born in countries where SCD is previously
considered rare (e.g., northern and western Europe).2

Although the majority of children in Africa do not reach
their fifth birthday, almost all newborns in well-resourced
countries can now expect to survive to adulthood due to
early diagnosis and better comprehensive treatment. Median
survival for SCD has dramatically improved, exceeding
45–65 years depending on the sickle genotypes.3,4 Recent
data showed that median survival for HbSS was 58 years and
for HbSC was 66 years in the USA5 (Fig. 1), and 67 years for
adults with HbSS/HbSb0 for a single centre in the UK.6

Nevertheless, the life expectancy of an individual with
SCD lags behind that of the general population by 20–30
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years.7 By their fifth decade, half of the surviving patients
will have suffered documented irreversible damage to one or
more organs due to ongoing vasculopathy.8

SCD was first reported in the western literature in
November 1910 by Dr James Herrick in a dental student from
Grenada.9 He ascribed the anaemia to peculiar elongated and
sickle shaped red cells. SCD became a poster child for
‘molecular disease’ when Linus Pauling suggested that it was
caused by the presence of an abnormal haemoglobin,10 which
was subsequently shown to arise from a single amino acid
substitution (valine for glutamic acid) in the sixth codon of b
chain,11 caused by adenine to thymine nucleotide substitu-
tion.12 As early as 1949, Neel suggested that the disorder
followed an autosomal recessive pattern of inheritance.13

SCD is caused by the presence of haemoglobin S (HbS,
a2b2

S); the syndrome comprises different genotypes that
include homozygous S (HbSS), compound heterozygous
forms of HbSC and b-thalassaemia (HbSb0 thalassaemia and
HbSb+ thalassaemia). In patients of African ancestry, HbSS
is the most common genotype at 65–70%, followed by HbSC
(about 30%), and the rest HbSb thalassaemia.14 SCD is
remarkably variable clinically. The central mechanism un-
derlying the pathophysiology of SCD is polymerisation of
deoxy-HbS and the formation of sickled cells, which is
highly dependent on the intracellular concentration of HbS.
Hence, it is not surprising that the most severe genotypes are
HbSS and HbSb0 thalassaemia as these genotypes have the
highest concentration of intracellular HbS. Nevertheless,
clinical variability is still observed within identical geno-
types. There are two key genetic modifiers: an innate ability
to produce fetal haemoglobin and co-inheritance of a-thal-
assaemia.15 Co-inheritance of a-thalassaemia (present in
about one-third of patients of African descent)16 results in
some beneficial as well some harmful effects.17 Reduced
intracellular HbS, RBC density and haemolysis in patients
who have co-inherited a-thalassaemia leads to a concomitant
increase in haematocrit with a predisposition towards com-
plications associated with microvascular occlusion such as
acute chest syndrome (ACS), acute pain, retinopathy, and
osteonecrosis.18,19 Such SCD-a-thalassaemia patients also
have a reduced risk of complications associated with
haemolytic anaemia such as pulmonary hypertension, car-
diomyopathy, kidney disease, priapism and leg ulcers.20,21

Several studies have also demonstrated association of a-
thalassaemia with lower transcranial Doppler (TCD) mea-
surements and, hence, reduced risk for stroke.22–24 Co-
existing a-thalassaemia also reduces bilirubin with a quan-
titative effect that is independent to that of the UGT1A1
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Fig. 1 Life expectancy of SCD. Improvement in survival of patients with SCD.
Reproduced from Pleasants (Nature 2014)120 with permission.
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promoter polymorphism.16 Co-inheritance of a-thalassaemia
blunts the response to hydroxycarbamide therapy in SCD;
this may be explained by its effect on fetal haemoglobin
(HbF) levels and mean corpuscular volume (MCV), two key
parameters associated with hydroxycarbamide response.
HbF levels vary from 1 to >25% in HbSS patients; this

innate ability to produce HbF is determined by several ge-
netic loci.25 Presence of a HbF determinant was suggested by
correlation of clinical severity and HbF level with the
different HbS b haplotypes—Benin (BEN), Central African
Republic (CAR-Bantu speaking), Senegal (SEN) and Arab-
India (AI)— indicative of its region of origin in Africa,
Middle East and the Indian subcontinent.26 Patients with SEN
or AI types have the highest HbF levels and milder disease,
while those with CAR haplotypes have lower HbF levels with
generally more severe disease.27,28 HbF levels impact the
‘primary’ level of disease pathology, HbS polymerisation,
thus HbF levels have a global beneficial effect. Indeed, in
SCD, high HbF levels are a major predictor of survival,4,6 and
reduced pain;29 conversely, low levels of HbF have been
associated with increased risk of brain infarcts in young
Fig. 2 Important clinical milestones in SCD.
children.30 In Jamaicans, higher HbF levels and the absence
of a-thalassemia appeared to predict a more benign disease.31

Although substantial advances and insights on the patho-
physiology of SCD have been made since the discovery of its
molecular basis, translation from this knowledge into treat-
ment has been very slow. The only available disease-
modifying therapy, hydroxyurea (hydroxycarbamide), is
still under-utilised.32 Allogeneic haematopoietic stem cell
transplantation (HSCT) either from bone marrow or umbilical
cord blood, a potentially disease-reversing therapy, has been
used in a small percentage of patients, mostly children with
severe symptoms (Fig. 2). Many unmet needs remain
including better management of pain (the most common
complication), improving anaemia and minimising organ
damage that will in turn improve quality and expectancy of
life.33 As the clinical outcome is so variable, better bio- and
genetic markers are needed for disease severity prediction to
inform prognosis and guide management.

PATHOPHYSIOLOGY AND MANIFESTATIONS
OF SICKLE CELL DISEASE
Polymerisation of deoxygenated HbS and the formation of
irreversibly sickled red blood cells lead to a downstream
cascade of vaso-occlusion, release of cytokines and inflam-
matory factors.34 Subsequent reperfusion of the ischaemic
tissue generates free radicals and reactive oxygen species,
which scavenge nitric oxide (NO).35 Chronic NO deficiency
can lead to platelet activation, increased vascular resistance,
and endothelial dysfunction contributing to the development
of vasculopathy.36,37 Ongoing haemolytic anaemia arises
from the shortened lifespan of sickled erythrocytes of 16–20
days compared to normal of 120 days.38 Patients with more
severe anaemia and haemolysis have reportedly higher inci-
dence of pulmonary hypertension, gallstones, leg ulcers,
priapism, and cerebrovascular diseases, compared to patients
with higher haematocrits who are more likely to suffer from
more frequent acute vaso-occlusive pain, osteonecrosis and



Fig. 3 Pathophysiology and complications of SCD.
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acute chest syndrome39 (Fig. 3). The latter group of SCD
patients are also likely to have co-inherited a-thalassaemia.
The ongoing vasoculopathy and inflammation inflicts

damage on various organs, and impacts on the patients as they
live into their fourth, fifth, and even sixth decade, trans-
forming SCD into a chronic multisystem disorder. One of the
largest and longest longitudinal studies of adult SCD showed
that approximately one-half of surviving patients by their fifth
decade had some form of irreversible damage of lungs, kid-
neys, brain, retina or bones, significantly affecting their
quality of life.8 One should always bear in mind that the older
adult with SCD could also have other co-morbidities that are
not sickle-related, such as diabetes, systemic hypertension,
and connective tissue disease, further compounding or
accelerating the complexity of sickle-related complications.

COMPLICATIONS AND MANAGEMENT OF
SICKLE CELL DISEASE IN OLDER ADULTS
Providing care for older adults with SCD can be challenging
as little data or evidence-based guidelines are available.
Recently, National Heart Lung and Blood Institute (NHLBI)
published evidence-based guidelines that are based on prag-
matic and expert consensus opinions rather than findings
from randomised controlled trials.32,40 A lack of high quality
evidence-based recommendations and relative rarity of the
disease makes it difficult to identify health care professionals
with expertise and experience to deliver care for individuals
with acute and chronic complication of the disease.33

Individuals with SCD are at increased risk of acute or
chronic organ damage related directly or indirectly to vaso-
occlusion, haemolysis, progressive vasculopathy, and
inflammation. These complications are seen in both children
and adults with SCD although there are some differences in
clinical course and severity depending on the patient’s age.

Pain

Acute sickle cell painful crisis is the hallmark and the most
common cause of acute morbidity resulting from vaso-
occlusion affecting bones and joints.30 It is the most
common cause of emergency room visit and hospital-
isation.41 Although the course of acute pain crisis is relatively
similar in adults and children, there are considerable differ-
ences in the frequency and intensity of crisis between the two
age groups. The Cooperative Study of Sickle Cell Disease
(CSSCD) showed that young adults (25–29 years) have a
higher frequency of crises: 1.2 pain episodes per year
compared to a rate of 0.4 per year for children younger than 4
years of age.30 Healthcare Cost Utilization Project (HCUP)
by Ballas and Lusardi indicated that the average length of
stay in adults was approximately 7.5 days41 compared to 4.4
days in children.42 Management of acute sickle pain is sup-
portive with hydration and analgesics. The role of
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hydroxyurea in prevention of painful crises will be discussed
later in the review.
In addition to recurrent acute painful crises, older adults are

more likely to have chronic pain which is usually multifac-
torial from inflammation, central and peripheral neural
sensitisation and avascular necrosis of bone.43 A review on
multiple dimensions of chronic pain in adults with SCD re-
ported that chronic pain occurs in at least 29% of adults, most
frequently in those 25–44 years of age.44 Chronic pain has a
negative impact on quality of life45,46 and its management
can be challenging, as a significant knowledge gap exists in
understanding the natural history and management of chronic
pain in older adults. Well-designed epidemiological and
randomised control studies are needed to improve pain
management.

Skeletal complications (sickle cell bone disease)

Patients with SCD are at risk of developing acute and chronic
disorders of bone and joints. Bone pain arising from vaso-
occlusive crisis, osteomyelitis and septic arthritis is the
most common acute skeletal complication. Clinical mani-
festation of osteomyelitis and septic arthritis can be some-
what similar to acute painful crises. Therefore, it is sometimes
difficult to make an appropriate diagnosis. The providers
should have a high index of suspicion for this serious
complication. The general principles for management of
osteomyelitis and septic arthritis in SCD are similar to those
in the general population. To date, no randomised controlled
studies are available for the management of osteomyelitis and
septic arthritis in both children and adults with SCD.47

Ongoing vasculopathy leads to chronic bone problems
such as chronic arthritis, osteonecrosis/avascular necrosis
(AVN) of bone, decreased bone growth and decreased bone
mineral density (osteopenia/osteoporosis).48 While there is
marrow hyperplasia and expansion compensating for
haemolytic anaemia, repeated vaso-occlusion can result in
infarction of bone marrow. This process can lead to
replacement of red marrow with bone trabeculation and
thinning of the cortex.48

AVN or aseptic necrosis arises from complete occlusion of
circulation to the bones and bone infarction, although the
pathogenesis is not clearly understood. Multiple factors such
as vascular blockade, vessel occlusion, thrombosis, oedema,
and progressive ischaemia of the microvasculature by sickled
cells play a role.49 The femoral head is the most commonly
affected site for AVN followed by the humeral head. The
Cooperative Study of SCD reported that the estimated age at
diagnosis of AVN was 28 years and age-specific prevalence
rate was highest in patients who were over 45 years of age
(34.9%).50 In contrast, the prevalence among patients under
25 years of age was approximately 6%.50 A recent study
reported that the incidence of AVN in SCD could vary from
3% to 50%.51 Management of AVN can be challenging given
limited evidence for standardised guidelines for most surgical
procedures in SCD. Options include conservative measures
(e.g., pain management and decreased weight bearing,
physical therapy) or surgical management (surgical core
decompression or arthroplasty). Early detection and inter-
vention at an early stage is needed to delay progressive joint
disease and improve quality of life. Total hip arthroplasty
(THA) is usually reserved for patients with advanced AVN of
the femur, given its failure rate. However, outcomes of THA
in SCD have improved with optimisation of medical man-
agement, use of cementless prosthesis, and co-management
by an experienced surgeon and haematologist during the
preoperative and postoperative period.51,52

Pulmonary complications

Pulmonary complications account for significant morbidity
and mortality in patients with SCD. Acute pulmonary com-
plications include pneumonia, pulmonary embolism and
acute chest syndrome (ACS). ACS, defined as a new radio-
density on chest radiograph accompanied by fever and/or
respiratory symptoms, can affect all age groups and is the
leading cause of death in patients with SCD.4 Although the
incidence of ACS is lower in older adults compared to chil-
dren (8.8 events/100 patient years in older adults versus 24.5
events/100 patient years in young children),53,54 the severity
and mortality are higher in older adults, largely due to a
higher incidence of bone marrow and fat emboli in adults55,56

and other co-morbidities.
Chronic pulmonary complications or sickle cell chronic

lung disease (SCCLD), are more prevalent in older adults,
and are characterised by impaired exercise tolerance, pro-
gressive heart failure, and impaired pulmonary function.57,58

Pulmonary hypertension (PH) defined by a mean arterial
pressure �25 mmHg at rest, is the most common chronic
pulmonary complication and a major cause of morbidity and
mortality among older adults.59,60 Other forms of SCCLD
include pulmonary fibrosis, restrictive airway disease and
sleep disordered breathing (nocturnal hypoxaemia and
obstructive sleep apnoea).61

Tricuspid regurgitant jet velocity (TRV) has been used as a
non-invasive predictive measure of PH. TRV �2.5 m/s
measured by 2D echocardiogram are suggestive of PH and
�3 m/s are highly predictive of PH.62 PH as defined by echo
studies (�2.5 m/s) has a prevalence of 30–40% in HbSS and
10–28% in HbSC genotype.63–65 Three studies utilising right
heart catheterisation have shown that the prevalence of PH in
SCD is between 6% and 10%.64,66,67 Approximately 50% of
patients with SCD-related PH have pre-capillary PH that is
multifactorial in aetiology: endothelial injury from recurrent
sickling, inflammation, chronic thromboembolism, and
haemolysis-induced nitric oxide depletion.68–70 The rest have
post-capillary PH arising from left ventricular dysfunction.
Patients with pulmonary arterial hypertension, as defined by
right heart catheterisations, tend to be older with poor func-
tional capacity and higher levels of N-terminal pro-brain
natriuretic peptide.64 The patients with signs and symptoms
suggestive of PH should be screened with 2D echocardio-
gram and it is suggested that those with TRV �2.9 m/s
should be evaluated with a right heart catheterisation to
confirm the diagnosis.
More recently, a prospective study of 122 consecutive

stable adults with SCD using comprehensive 2D and 3D
echocardiography suggest that the elevated cardiac output
and left ventricular volume overload secondary to chronic
anaemia may be the dominant factor responsible for abnormal
cardiopulmonary haemodynamics in patients with SCD.71

There are limited data for optimal treatment of PH.
Recommended management includes treatment of heart
failure, correction of hypoxaemia with oxygen therapy,
anticoagulation for those with thromboembolism, hydroxy-
urea or transfusion, multidisciplinary approach with
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haematologists and pulmonologists, and referral to speci-
alised centres.70 Well-designed epidemiological studies are
needed to study the incidence, prevalence and natural history
of chronic pulmonary complications among older adults with
SCD.
Renal complications (sickle cell nephropathy, SCN)

Patients with SCD are at risk of developing a spectrum of
acute and chronic renal complications. Acute manifestations
include microscopic or gross haematuria, urinary tract
infection and acute kidney injury. One French study reported
that acute kidney injury occurs in 4–10% of hospitalised
patients with SCD and is more frequent in patients with acute
chest syndrome and pulmonary hypertension.72

Common sickle-related renal complications include
hyperfiltration, hyposthenuria (diminished concentrating
ability), and albuminuria. In a small number of patients, renal
function declines progressively leading to end-stage renal
disease.73,74 Microalbuminuria is age-dependent and occurs
in more than one-third of adults.21 One study showed that by
the age of 55 years, 60% of patients with SCD were found to
have microalbuminuria.21 Advanced chronic kidney disease
(stage III–IV, defined as eGFR 15–60 mL/min per 1.73m2)
occurs in 4–18% of adults with SCD.8,75 In 2009, Serjeant
et al. reported that the prevalence of advanced kidney disease
in patients over 60 years of age is approximately 24% and
end-stage renal failure (ESRF) was the cause of death in 45%
of patients aged 60 years or older.76

Few options are available for treatment of SCN. Current
therapeutic recommendations are largely adopted from expert
or consensus opinion. One should bear in mind that the older
adult with SCD is also at risk of other diseases such as hy-
pertension, diabetes, connective tissue disorder and other
forms of glomerulonephritis. All of these conditions can have
a significant impact on renal function. Early recognition of
albuminuria is essential as it is a sensitive marker of
glomerulopathy and chronic renal impairment. We suggest
regular monitoring for proteinuria, haematuria and renal
function during clinic attendance. Once patients develop
proteinuria with a urinary protein to creatinine ratio (uPCR)
of >50 mg/mmol (442 mg/g), persistent microscopic
haematuria, or declining renal function (>10% fall in eGFR
per year), they should be referred for joint specialist care
(nephrologist and haematologist). When to start on
angiotensin-converting enzyme (ACE) inhibitors or angio-
tensin receptor blockers (ARBs) is debatable. Some use a cut-
off of uPCR ratio >50 mg/mmol while others prefers to wait
until uPCR is >100 mg/mmol74 before commencing ACE
inhibitors. Hydroxyurea therapy should be considered as
recent studies indicate that it can decrease glomerular
hyperfiltration and microalbuminuria, subsequently prevent-
ing the progression of renal dysfunction in SCD.77,78

Management of ESRF includes erythropoietin-stimulating
agents (ESA), dialysis or renal transplant. The use of ESA
can be effective, particularly in combination with hydroxy-
urea, in correcting anaemia.74,79 Ten-year survival for pa-
tients on dialysis is 14% compared to 56% for SCD after
renal transplantation.80 Despite the poor prognosis of ESRF
secondary to SCD, patients are less likely to receive a
renal transplant.81 Exchange transfusion is recommended in
preventing intra-renal sickling and promoting preservation of
the transplanted kidney.73
Hepatobiliary complications

Sickle hepatopathy is heterogeneous in nature and has been
used to describe the overlapping causes of liver dysfunction.
Sickle hepatopathy can vary from mildly abnormal liver
function tests and self-limited cholestasis to severe forms of
sickle cell intrahepatic cholestasis (SCIC) and cirrhosis.82 It
is important to recognise SCIS as it can be life threatening. It
was first described in 195383 and clinically it comprises
severe right upper quadrant pain, acute hepatomegaly,
coagulopathy, extreme hyperbilirubinaemia (predominantly
conjugated in contrast to unconjugated in haemolytic
anaemia), and moderately elevated liver enzymes with oc-
casional progression to acute hepatic failure.84

The overall prevalence of liver dysfunction in patients with
SCD has not been well established. It is difficult to differ-
entiate abnormal liver enzymes due to intrinsic liver disease
from those resulting from haemolysis. One study reported
that 10% of patients have abnormal liver dysfunction85 but
another study by Johnson et al. showed that 30% of patients
had abnormal liver biochemical tests during a 5-year follow-
up period.86 The clinicopathological features can be further
complicated by increased iron deposition in the reticulo-
endothelial system and Kupffer cells and/or viral hepatitis
as a complication of cumulative red cell transfusions.87

Data on management of sickle hepatopathy is limited and
not evidence based. The critical management is accurate
identification and treatment of every underlying and coex-
isting condition that can contribute to liver dysfunction.
Although limited treatment options are available, the exclu-
sion of other causes of liver dysfunction, the use of iron
chelating agents for patients with iron overload and treatment
of underlying viral hepatitis are recommended.87 Use of hy-
droxyurea may improve the clinical course of SCD in gen-
eral, thus reducing the need for blood transfusion. For
patients with severe acute liver dysfunction syndromes, and
progressive liver cholestasis, the use of exchange blood
transfusion (EBT) should be considered along with support-
ive care to treat intrahepatic cholestasis and its associated
coagulopathy.84 There are several case reports showing that
prompt EBT can reverse a clinical course of acute SCIC.
Liver transplantation may play a role in a subset of patients
with acute hepatic crisis, liver failure or cirrhosis.87 We
recommend that patients with evidence of hepatic damage be
referred to centres where they can be co-managed by a
haematologist and hepatologist. More importantly, future
multi-centre collaborative studies are needed to better un-
derstand and define the natural history of hepatic complica-
tions of sickle cell disease and its management.

Neurological complications

Cerebrovascular accidents (CVA) are devastating complica-
tions affecting both children and older adults with SCD, and
one of the leading causes of death in both children and
adults.4,88 The 1978–1988 epidemiological study by the
Cooperative Study of Sickle Cell Disease (CSSCD) reported
that the incidence of stroke for HbSS disease was 0.61 per
100 patient.89 The study also showed that 24% of individuals
with SCD experience a clinical stroke by age 45 years.89 The
type of stroke varies with age. Ischaemic or thrombotic stroke
is most common in children between the age of 2 and 9 years
with a second peak in adults over the age of 29 years.89

Haemorrhagic stroke accounts for approximately one-third



Box 1. Recommended health maintenance and
outpatient management of SCD in older adults
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of the CVAs in SCD, being most frequent in the 20–29 age
group.89 A recent study based on 1998–2007 California
discharge statistics estimated that the rate of stroke in young
adults (13–34 years) was 360/100,000 person years
compared to 1160/100,000 among middle ages (35–64
years) and 4700/100,000 person years among elderly adults
(65 years and older) with SCD.90

The majority of studies for CVAs in SCD are restricted to
children and the evidence-based data for older adults are
limited. The Stroke Prevention in Sickle Cell Anaemia
(STOP) study demonstrated that continuous blood trans-
fusion is effective in reducing CVA in children at high risk as
identified by abnormal transcranial Doppler (TCD) ultraso-
nography.91 A follow-up study (STOP II) subsequently
showed that discontinuing blood transfusion results in a high
frequency of reversion to abnormal TCD velocities and
stroke.92 Thus, the recommendation is to continue blood
transfusion indefinitely as primary stroke prevention in chil-
dren at risk as identified by TCD screening. As for man-
agement of acute ischaemic strokes in adult patients with
SCD, the evidence is very limited. Older adults with acute
ischaemic stroke should also be evaluated for other risk
factors for stroke such diabetes mellitus, hyperlipidaemia,
hypertension, atrial fibrillation, and cardiovascular anomaly
(patent foramen ovale). Our preferred initial treatment for
adult SCD patients presenting with ischaemic stroke is an
exchange blood transfusion.93 The use of thrombolytics
should be individualised and considered in older adults with
ischaemic stroke if they meet the strict eligibility criteria.
Secondary preventive strategies for strokes and silent cerebral
infarcts include a regular monthly transfusion (preferably an
exchange transfusion)93 and modification of non-sickle
related risk factors. In younger adults, HSCT should be
considered if suitable donors are available.
Neurocognitive impairment, whilst well established in

children with SCD, also increases with age94 and can be
compounded by other pathology such as silent cerebral in-
farcts, moya moya and overt clinical stroke throughout the
SCD lifespan.95 Although neuropsychological data in adults
with SCD is limited, abnormalities in frontal lobe blood flow,
dementia and progressive encephalopathy with age have been
well documented.96–98

Silent infarcts and endothelial dysfunction of SCD, in
combination with ageing, are likely to predispose patients
with SCD, particularly to vascular dementia.97 Treatment for
these chronic neurocognitive issues is not so well established,
however limited evidence suggests that hydroxyurea therapy
in children can improve general cognitive ability, verbal
reasoning and fluid reasoning.99
� Education for patients and care givers
� Administration of appropriate immunisations
� Annual screening for blood borne diseases (hepatitis C and
HIV) in transfusion dependent patients

� Screening and prevention of chronic complications
including iron overload, cerebrovascular disease,
pulmonary hypertension, hepatopathy, and nephropathy

� Annual ophthalmology evaluation for retinopathy
� Assessment of bone health and leg ulcers
� Assessment of stress and depression
� Assessment of pain and narcotic use
� Assessment of steady-state blood results and physiolog-
ical measurements (oxygen saturation and blood pressure)
Venous thromboembolism (VTE)

Haemostatic abnormalities seen in SCD such as coagulation
activation, endothelial dysfunction and vaso-occlusion can
increase the risk of VTE.100–102 Recent studies by Naik et al.
showed that the incidence rate of first VTE among patients
aged �15 years with SCD was 5.2 events/1000 person years
with a cumulative incidence rate of 7.4% by the age of 30
years and 11.3% by age of 40 years.103 Age in itself is
considered an independent risk factor for VTE. Therefore, as
patients with SCD live longer, we expect to see an increased
incidence of VTE in SCD. There is still ongoing debate on
the duration of treatment with anticoagulation for VTE and
benefits of prophylactic anticoagulation in patients with
SCD.104

IMPORTANCE OF HEALTH MAINTENANCE
AND AVAILABLE TREATMENT OPTIONS
Health maintenance encompasses early recognition, preven-
tion and treatment of organ damage, and should be an
essential part of routine health care in older adults with SCD.
Box 1 lists the recommended health maintenance for older
adults with SCD.
The two most widely available therapies for patients with

SCD are hydroxyurea and blood transfusion.

Hydroxyurea

As HbF is a potent inhibitor of intracellular polymerisation,
therapeutic induction of HbF has been a major objective in
the management of SCD. Pharmacological agents include
cytotoxic drugs such as hypomethylating agents (5-
azacytidine or decitabine), Ara-C, hydroxyurea, short chain
amino acids and their analogues, erythropoietin and more
recently histone deacetylase (HDAC) inhibitors such as
vorinostat. Of these agents, hydroxyurea has the best safety
profile with minimal side-effects105 and was approved by the
USA Food and Drug Administration (FDA) in 1998 for
treatment of adults with severe SCA. The primary mechanism
of action of hydroxyurea in vivo is the reversible inhibition of
ribonucleotide reductase (RR), a critical enzyme for DNA
synthesis during S phase of the cell cycle.106 The exact mo-
lecular mechanism by which hydroxyurea increases HbF
level is still not fully understood. In addition to increasing
HbF levels, the clinical efficacy of hydroxyurea for SCD
includes decreasing white blood cells, decreasing endothelial
adhesion, decreasing degree of chronic inflammation and
improving cell hydration.107–109 Despite its safety and effi-
cacy, it is still underutilised among patients with SCD. In
2014, the NHLBI published new evidence-based guidelines
for the management of patients with SCA and Box 2 lists
the evidenced-based recommendations for hydroxyurea
therapy.32

Transfusion therapy

Transfusion of red blood cells is one of the most effective
therapies for patients with SCD. The rationale of blood



Box 2. Evidence-based recommendations for use of
hydroxyurea in adults with SCD32

� Two or more moderate to severe crises during a 12-month
period

� Sickle cell-associated pain that interferes with daily
activities and quality of life

� History of recurrent or severe acute chest syndrome
� Severe symptomatic anaemia that interferes with daily
activity or quality of life

� Patients with chronic kidney disease who are on
erythropoietin (adding hydroxyurea improves anaemia)

Note: Recommend discontinuing hydroxyurea in women who
are pregnant or breast-feeding.
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transfusion in SCD is to: (a) improve oxygen carrying ca-
pacity of blood to tissues, and (b) dilute concentration of
circulating sickled erythrocytes to improve microvascular
circulation.110 Blood transfusion can be given intermittently
for treatment of acute complications or in preparation for
surgery, or long term to reduce the incidence and severity of
sickle-related organ damage. Transfusion can be categorised
as simple (or top-up) versus exchange transfusion, in which
blood is removed either manually or by automated apheresis
machine. Exchange transfusion is preferred to simple trans-
fusion in clinical situations where the concentration of HbS
needs to be reduced quickly without increasing blood vis-
cosity, such as acute stroke or acute chest syndrome or
preparation of major surgery.14 The evidence is limited in
terms of the HbS% or number of transfusions needed for
clinical efficacy. The decision whether to transfuse should be
based on risks versus benefits of transfusion of red blood cells
depending on the clinical situation, and availability.
Commonly accepted indications for intermittent transfusion
include severe symptomatic anaemia, acute multi-organ
failure and severe vaso-occlusive crisis including acute
chest syndrome.14 Although it is very effective in preventing
several complications of SCD, transfusion therapy carries the
risk of secondary iron overload, alloimmunisation and
transmission of blood borne diseases such as hepatitis C.
Therefore, long term transfusion therapy is usually reserved
for stroke prevention and management, severe anaemia, and
progressive/recurrent organ damage.14,111,112 A multicentre
trial has been conducted to determine the role of short-term
transfusion therapy in improving cognitive ability of older
adults, however the results are awaiting.

EMERGING THERAPIES
To date, allogeneic HSCT is the only disease-reversing
treatment modality for SCD.113 Although human leukocyte
antigen (HLA)-matched related HSCT is widely accepted as a
standard of care for children, it is still investigational for older
adults. The commonly accepted indications for HSCT in
adults include a history of cerebrovascular accident, recur-
rent vaso-occlusive crisis despite hydroxyurea therapy,
osteonecrosis, red cell immunisation and recurrent acute
chest syndrome. Experience with myeloablative HSCT in
older adults with SCD is limited, as patients older than 16
years old were usually excluded given its treatment related
toxicity. Unlike haematological malignancies, achieving
complete myeloablation is not essential as mixed chimaerism
of donor and recipient is sufficient to reverse clinical com-
plications of the underlying genetic defect.114,115 Hence, in-
vestigators have explored non-myeloablative and less toxic
conditioning regimens for allogeneic HSCT in older adults,
and results are very positive and encouraging.116 However,
allogeneic HSCT is still limited by lack of HLA-matched
related or unrelated donors. Currently, the use of alternative
donors such as haploidentical donors (siblings or parents) and
cord blood are under investigation. Autologous HSCT after
correction of genetic defect using genome-editing technique
is another potential approach in curing sickle cell disease. It
can overcome the limitation of finding a matched donor with
a lower risk of morbidity such as graft versus host dis-
ease and graft rejection. Other gene therapy approaches
include increasing fetal haemoglobin by genome-editing of
g globin gene117 or repressors of its expression, such as
BCL11A.118,119
CONCLUSION
There has been a significant understanding of the patho-
physiology and factors contributing to the severity of SCD
over the past decade. Yet, many patients still face a lifetime of
complications and management remains a challenge. As the
life expectancy of patients with SCD has increased compared
to their historical peers, there is an urgent need for large-
scaled randomised clinical controlled trials for older adults
to obtain evidence-based management and effective thera-
peutic agents. Establishing an international database for SCD
will be of great importance to understand the natural history
and diverse heterogeneity of the disease.
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